ECAD Testing

Case Histories

Circuit Degradation

- Prolonged exposure to heat, moisture, and chemicals can degrade insulation quality.
- Breakdown may occur within the circuit's cables, connections, or end device.
- Degradation heat stress, moisture intrusion, corrosion, loose connections, and failed splices.

Heat Stress

May change the physical properties of the insulating material.

- Embrittled Insulation
- Dielectric Constant Changes
- Impedance Changes
- Low IR, low DAR

Moisture Intrusion

Dielectric Constant Changes
Impedance Changes
Low IR, low DAR

Capacitance (C=Kɛo(A/d))

- K= dielectric constant, εο = permittivity, A = plate area, d = distance between plates.
- K values: Air = 1, Polyethylene = 2.3, Rubber = 3, Water = 81

Corrosion / Failed Splices / Loose Connections

Increased Loop Resistance
High Impedance
Low IR, low DAR (some cases)

Key Electrical Measurements

- Impedance (Z)
- Time Domain Reflectometry (TDR)
- DC resistance (loop checks)
- Insulation Resistance (IR)
- Dielectric Absorption Ratio (DAR)
- Polarization Index (PI)

Impedance Measurements

- Phase Angle (θ)
- Impedance (Z)
- AC Resistance (R)
- Reactance (X)
- Capacitance (C)
- Dissipation Factor (DF)
- Inductance (L)
- Quality Factor (QF)
- Frequency measurements = 100 Hz to 40 kHz
- Referred to as "Lumped" impedance data

Formulas

We acquire impedance and phase angle. Resistance $R = Z(\cos \theta)$ **Reactance** $X = Z(\sin \theta)$ Impedance $Z = \sqrt{R^2 + X^2}$ Capacitance C = $-1/X(2\pi F)$ Inductance $L = X/2\pi F$ **Dissipation Factor** DF = R/XQuality Factor QF = X/R

Impedance Vector

9

• Resistive Connections.

Circuit reactance (Xc) approaches R with increasing frequency. With <u>small</u> changes in R (connection anomaly), the DF rate of change is greater at higher frequencies.

• Moisture Intrusion.

Reactive (Xc) component is typically very large at lower frequencies. Circuit reactance (Xc) approaches R with increasing frequency. The addition of a <u>small</u> amount tends to reduce the reactive component, whereas the DF rate of change is greater at the lower frequencies.

TDR

- Cable Radar
- Fast risetime pulse propagated down the line (cable)
- Impedance variations greater or less than the source impedance reflects part or all of the TDR energy back to the source
- Characteristic impedance ($Zc = \sqrt{L/C}$), the measure of resistance to the electrical current, is simply the impedance the TDR pulse sees at every point down the line.
- Measured in ohms, based on reflection coefficient (rho)
- TDR is the "distributed" impedance data
- Graphically displays "lumped impedance" distributed over the length of the circuit
- Locations noted in time and vary by specific cable velocity factors

Insulation Resistance (IR)

- Total leakage current
- Combination of charging, absorption, and leakage currents
- IR values typically start out low (high current) and increase (low current) with test duration
- Typical to establish minimum acceptable IR
- Subsequent IR testing may produce acceptable (above minimum) values, but much lower than initial values.

IR Practice (Rule of Thumb)

 Correction at high temperature – typically IR values are reduced by a factor of 2 for each 10°C (increase).

 Dual voltage IR- performing 2 separate IR tests at 2 different voltages - typically IR values should show <25% difference.

Polarization Ratios

- Polarizing molecules (dipoles)
- Dielectric absorption ratio, DAR = 60 sec. value / 30 sec. value
- Polarization index, PI = 10 min. value / 1 min. value
- Acceptable DAR (and PI) values typically >1.00
- End component may affect DAR/PI.

Histories

Case History #1

ARPI Circuit (Coil Anomaly)

ARPI -Coil Lead 2 to Shield

CODE	Capacitance	Dissipation Factor
B8-PRIMARY	0.15 uF	1.36 D
F10-PRIMARY	0.11 uF	1.01 D
F6-PRIMARY	0.12 uF	1.12 D
F8-PRIMARY	0.11 uF	936.34 mD
H2-PRIMARY	0.20 uF	1.96 D
H6-PRIMARY	0.10 uF	851.31 mD
K10-PRIMARY	0.11 uF	916.75 mD
K6-PRIMARY	0.11 uF	919.10 mD
K8-PRIMARY	0.11 uF	906.14 mD

ARPI – Coil Lead to Shield TDR Signatures

ARPI – Enhanced View of The Coils

Case History #2

ARPI Circuit (Failed Splice)

ARPI -Coil Leads to Ground Pin

CODE	CFG	DC Res./ IR	Inductance/ Capacitance	<i>Quality Factor/ Dissipation Factor</i>
RPI_J3	С	7.41	81.80 uH	69.42 mQ
RPI_J3	D	22.85	104.18 mH	2.47 Q
RPI_J3	E	330.80 M	48.30 nF	72.24 mD
RPI_J3	F	> 31.00 M	49.13 nF	86.47 mD
RPI_P10	С	271.01 M	45.79 nF	62.39 mD
RPI_P10	D	> 31.00 M	45.69 nF	62.41 mD
RPI_P10	E	401.82 M	47.03 nF	79.86 mD
RPI_P10	F	> 31.00 M	46.70 nF	72.94 mD

ARPI – Coil Lead to Ground Pin TDR Signatures

ARPI – Enhanced View of the Suspect Area (Splice)

Case History #3

ARPI Circuit (Open Shield Connection)

ARPI – Shield to Ground Capacitance Vs. Frequency

ARPI – Shield to Ground TDR Signatures

Case History #4

CRDM Circuits (Failed Splices)

Data Across Coils

CODE	DC RES (Ω)	AC RES (Ω)	Inductance	Quality Factor
G3_STAT	11.36	123.48	248.46 mH	1.26 Q
G5_STAT	387.29 m	384.89 m	89.75 uH	146.51 mQ
N11_STAT	11.54	122.10	247.09 mH	1.27 Q
N13_STAT	11.45	125.03	252.63 mH	1.27 Q
N3_STAT	11.32	118.05	239.97 mH	1.28 Q
N5_STAT	11.13	120.82	247.68 mH	1.29 Q
N7_STAT	11.91	123.92	252.36 mH	1.28 Q
N9_STAT	395.35 m	401.15 m	88.67 uH	138.89 mQ
P10_STAT	11.63	129.77	260.71 mH	1.26 Q
P6_STAT	11.48	121.74	246.67 mH	1.27 Q
P8_STAT	11.20	120.10	245.75 mH	1.29 Q

CRDM - TDR Signatures Locating Shorted Cables

CRDM - TDR Signatures Locating Shorted Cables

Case History #5

CRDM Circuit Coil Anomaly (Turn to Turn Short)

Coil Data

CODE	DATE	DC RES (Ω)	AC RES (Ω)	Inductance	Quality Factor
B06-STAT	4/13/1999	10.89	218.42	173.65 mH	2.00 Q
B06-STAT	10/8/2003	10.01	208.52	169.28 mH	2.04 Q
B08-STAT	4/13/1999	10.43	220.17	178.86 mH	2.04 Q
B08-STAT	10/7/2003	9.67	206.72	171.69 mH	2.09 Q
D04-STAT	4/13/1999	9.21	210.60	172.42 mH	2.06 Q
D04-STAT	10/7/2003	9.37	205.03	168.62 mH	2.07 Q
D10-STAT	4/13/1999	10.48	217.82	178.40 mH	2.06 Q
D10-STAT	10/8/2003	9.71	208.93	173.04 mH	2.08 Q
E11-STAT	4/13/1999	9.76	222.13	171.97 mH	1.95 Q
E11-STAT	10/8/2003	9.75	203.00	163.06 mH	2.02 Q
F02-STAT	4/13/1999	10.03	213.58	171.45 mH	2.02 Q
F02-STAT	10/7/2003	9.85	204.73	167.02 mH	2.05 Q
F12-STAT	4/13/1999	9.93	214.85	168.70 mH	1.97 Q
F12-STAT	10/8/2003	9.80	164.58	91.68 mH	1.40 Q
G03-STAT	4/13/1999	10.80	210.41	167.06 mH	2.00 Q
G03-STAT	10/7/2003	10.40	203.05	163.53 mH	2.02 Q
G05-STAT	4/13/1999	9.47	217.14	176.35 mH	2.04 Q
G05-STAT	10/7/2003	9.59	209.99	172.65 mH	2.07 Q

Coil Resonance

Coil Inductance

CRDM Coil – TDR Signatures

Circuit Resonance After Coil Replacement

Coil Inductance After Replacement

Case History #6

CRDM Circuit Coil Anomaly (Suspected Turn to Turn Short)

Coil Resonance

Coil Inductance

Case History #7

RTD Circuit (Lead to Ground Short)

3 Wire RTD Circuit -Lead to Shield Data

Device	Cfg.	Date	IR/DC Res.	DAR	Cap./ Ind.	Diss. / Qual.
TE-409A-1	D	10/30/97	0.00	N/A	0.22 mH	515.12 mQ
TE-409A-1	E	10/30/97	107.96	N/A	87.03 uF	66.08 D
TE-409A-1	F	10/30/97	107.93	N/A	81.28 uF	61.74 D
TE-409A-1	D	3/16/99	6.09 G	1.29	52.32 nF	29.40 mD
TE-409A-1	E	3/16/99	31.00 M	N/A	52.33 nF	17.40 mD
TE-409A-1	F	3/16/99	31.00 M	N/A	52.35 nF	17.40 mD

3 Wire RTD Circuit - Lead to Ground Short

3 Wire RTD Circuit - After Repair

Case History #8

TC Cables (Heat Stressed Cable)

TC Data – Heat Stressed Insulation (Lead to Ground)

Device	IR	DAR	Cap.	Diss.
F2026Q2480	4.07 M	0.99	7.72 nF	122.15 mD
F3026Q30480	30.83 M	1.31	7.79 nF	3.88 mD

TC Data – Heat Stressed Insulation – Diss. Vs. Freq.

F2026Q2480 E 12/2/1992 14:50

F3026Q3048 E 11/30/1992 09:27

TC Data – Heat Stressed Insulation – Cap. Vs. Freq.

TC – TDR Signatures

Case History #9

Wet Triaxial Cable

Dissipation Vs. Frequency Graph

Capacitance Vs. Frequency Graph

INTERM_SPA C 10/9/2000 17:46

Insulation Resistance Vs. Time Graph

INTERM_SPA B 10/29/1997 10:58

INTERM_SPA B 10/9/2000 17:42

Wet Triaxial Cable – TDR Signatures

Enhanced View of Suspect Area

Case History #10

Resistive Connection

Dissipation Vs. Frequency Graph

Dissipation Factor

Resistive Connection - TDR

Enhanced View of Suspect Area

Case History #11

4.16 kV Underground Feeder Cables (Moisture Intrusion)

4.16 kV Feeder Cable Data

Test Description

Cfg.	Description
Α	Phase A to Phase B
В	Phase A to Phase C
С	Phase B to Phase C
D	Phase A to Shield (Drain)
E	Phase B to Shield (Drain)
F	Phase C to Shield (Drain)

Phase to Phase Data

Device	Cfg.	IR	PR	Cap.	Diss.
A3099A3128	A	19.84 G	5.1	2.69 uF	4.71 D
A3099A3128	В	21.80 G	5.46	3.07 uF	5.43 D
A3099A3128	С	856.28 M	0.85	4.20 uF	7.07 D

Phase to Shield (Drain) Data

Device	Cfg.	IR	PR
A3099A3128	D	20.02 G	5.49
A3099A3128	E	717.67 M	1.03
A3099A3128	F	13.60 G	4.7

4.16 kV Feeder Cable – IR Vs. Time

4.16 kV Feeder Cable - TDRs

Enhanced View of Suspect Area

Case History #12 Conductor Geometry

Multiple Conductors Spiraled Around Single Conductor

